

AFRL-RI-RS-TR-2008-206
In House Interim Technical Report
July 2008

OUT-OF-CORE DIGITAL TERRAIN ELEVATION
DATA (DTED) VISUALIZATION

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Public
Affairs Office and is available to the general public, including foreign nationals. Copies
may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2008-206 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/
JULIE BRICHACEK, Chief JAMES W. CUSACK, Chief
Agile Information Concepts Information Systems Division
Information Systems Division Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JULY 2008
2. REPORT TYPE

In House Interim
3. DATES COVERED (From - To)

May 06 – May 08
4. TITLE AND SUBTITLE

OUT-OF-CORE DIGITAL TERRAIN ELEVATION DATA (DTED)
VISUALIZATION

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
62702F

6. AUTHOR(S)

Jason Moore (AFRL), Aaron McVay (CACI, Inc.)

5d. PROJECT NUMBER
558S

5e. TASK NUMBER
AV

5f. WORK UNIT NUMBER
IH

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
AFRL/RISF
525 Brooks Road
Rome, NY 13441-4505

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RISF
525 Brooks Rd
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2008-206

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# WPAFB 08-4197

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This interim technical report discusses a project under the Advanced Visualization and Interactive Displays (AVID) in-house
program to develop techniques to load and display voluminous high-resolution terrain data with sufficient visual quality and
interactivity. The AVID program objectives are to develop, evaluate, and exploit new concepts in information visualization, display
technology, and human-computer interaction (HCI) that provide airmen with a tailored information environment. The result of this
project was the successful design and implementation of a data structure for storing, manipulating, and processing terrain data vertex
information, and an algorithm that intelligently processes the information contained within the data structure.

15. SUBJECT TERMS
3D Continuous Level of Detail, 3d CLOD, Massive dataset visualization, Digital Terrain Elevation Data visualization, DTED
visualization.

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

17

19a. NAME OF RESPONSIBLE PERSON
Peter A. Jedrysik

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
315-330-2150

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Table of Contents

1 Introduction .. 1
2 Approach ... 1

2.1 Data Structure .. 2
2.2 Algorithm .. 4

3 Conclusions ... 11
 References………………………………………………………………………..13

Table of Figures

Figure 1 Wireframe depiction of stitched bands ... 3
Figure 2 TreeNode structure .. 3
Figure 3 Non-textured OpenGL lit DTED ... 4
Figure 4 Top Level Example – Two Top Level TreeNodes Share IndexNodes . 5
Figure 5a Refinement Process – Initial State through Step 2 6
Figure 5b Refinement Process – Step 2 through Step 5 7
Figure 6 Data structure after one refinement process iteration 8
Figure 7a Decimation Process – Initial State ... 8
Figure 7b Decimation Process – Step 1 through Step 3 9
Figure 8 Display Process Flow Chart ... 10
Figure 9 Applying the display process to the data structure 11

i

1 Introduction

3D Continuous Level of Detail (CLOD) systems for massive datasets often
sacrifice the raw data format and accuracy for speed, removing undesirable
features in the source data, or to eliminate inherent differences in resolution. We
present a novel approach which does not have any of these limitations and is
focused on displaying the source data from the National Geospatial Intelligence
Agency (NGA) Digital Terrain Elevation Data (DTED) [1] without modification.
The implementation ensures accurate and timely presentation of the terrain data
that is critical in a Command and Control environment and addresses the in-
house research objective to develop novel information visualization concepts.

This implementation addresses the need to display high resolution terrain data
(e.g. DTED) from global to high-resolution scales. This type of task has seen
proliferation among modern computers due to the free distribution of applications
like Google Earth©. This approach addresses specifically the methodology for
loading and managing gridded datasets of the ilk available from the NGA and the
US Geological Survey (USGS). Since even the best modern hardware cannot
use brute force methods for loading or displaying such voluminous data at the
global level, the only way to achieve the visual quality and the interactive speed
desired is to use real-time algorithms that vary the quality of the displayed
content.

The ability to view terrains with such a large number of vertices is an important
research area, where several in-core and out-of-core techniques have been
developed. However, these techniques require an expensive pre-processing
stage which decimates, or re-grids the data, changing the statistical accuracy of
the original incoming data. This problem is still open and challenging as the
amount and resolution of data is growing faster than that of our ability to visualize
such data.

This report describes the implementation to load and manage large terrain
datasets. This includes a data structure for storing, manipulating, and processing
of vertex information, and an algorithm that intelligently processes the information
contained within the data structure.

2 Approach

The approach provides a data structure and algorithm for loading and/or
displaying gridded datasets by adaptively loading data from an external datastore

1

and providing this information to a modern graphic processing unit in an
acceptable form. In particular, this approach uses independent view refinement
criteria for determining the usefulness of a particular vertex of the gridded data,
retrieves that data from some backing store and inserts that data into the Circular
Linked List of Geometrical Relationship (CLLGR) data structure. When all
necessary refinements have been completed, it dispatches the vertex information
as a list of triangle fans for visualization. These refinements can be adaptive,
such that more data may be fetched to satisfy the view refinement criteria, but a
redraw can occur due to the desire to provide the user with a more responsive
system. The data may be procedurally generated as is the case for fractally
generated terrain or displaying of the World Geodetic 1984 (WGS84) reference
ellipsoid, or can be read from memory if the desired data has already been
provided to a cache, or can be loaded from some other persistent storage device
like a modern hard disk drive, or can be fetched from some web service or other
network capable infrastructure.

2.1 Data Structure

The algorithm is implemented using two different data structures; a forest of
Quadtrees comprised of TreeNodes and a shared pool of elevation data called
IndexNodes. Each TreeNode is a collection of linked IndexNodes that encode
some spatial relationship, and potentially children TreeNodes. Each IndexNode
maintains unique mappings to other IndexNodes and has a vertex for its
Cartesian based information. The algorithm relies on a forest consisting of 282
TreeNodes, and 1500 IndexNodes. The top level TreeNodes form the coarsest
representation of the Earth. Refinement is currently based on approximated
projected screen area of the TreeNode; however, other previously published
techniques for refinement can be easily integrated [2].

The number of initial TreeNodes is derived from segmenting the globe into latitu-
dinal bands where each TreeNode in a band covers the same area as its
neighbor. The bands are: 90°N to 82°N, 82°N to 80°N, 80°N to 75°N, 75°N to
70°N, 70°N to 50°N, 50°N to 30°N, 30°N to 0°N. This is repeated symmetrically
in the southern hemisphere. Each band is made up of a different number of
TreeNodes, but always a number that evenly divides the DTED elevation
information. This prevents any top level TreeNode from cutting through the
changes in data resolution of the underlying six DTED bands: 82°S to 75°S,
75°S to 50°S, 50°S to 0°N, 0°N to 50°N, 50°N to 75°N, and 75°N to 82°N.

Each TreeNode is comprised of nine IndexNodes that map directly to elevation
posts found in the source data. IndexNodes store the native elevation data found
in the DTED files along with four links to their adjacent neighboring IndexNodes
which are unaware of the TreeNode topology. A critical component of this
algorithm is that TreeNodes share IndexNodes. The IndexNodes on the right

2

edge of the “orange” triangle fan are the same as the IndexNodes on the left
edge of the “blue” triangle fan (Figure 1).

During refinement of a TreeNode, the new data point is inserted by loading the
new elevation from the source data then walking the appropriate edge to find its
insertion point. If an IndexNode already exists with the same latitude and
longitude, the new node is discarded. A distinct advantage is that a single
TreeNode never needs access to its neighbor and that insertions can happen in
non-uniform placements. This makes stitching between various resolutions
possible.

For this example, and our current embodiment, it resembles a traditional
Quadtree structure. Where each IndexNode has a “top”, “bottom”, “left”, and
“right” pointer to another IndexNode, and each tree node consists of a center
IndexNode (denoted as V0) and eight immediate neighbors, see Figure 2. Each
TreeNode has zero or four children.

Figure 1 Wireframe depiction of stitched bands

Figure 2 TreeNode structure

TreeNode

V0

V5

V1

topbottom

t opbottom

V7
left

right
V3

right

left

V2
right

left
V8

left

right

V6
left

V4
right

topbottom topbottom

topbottomtopbottom

rightleft

TreeNode

IndexNode

Legend

3

2.2 Algorithm

Our patent pending algorithm implements a particular view refinement process
and has an out-of-core mechanism for the loading of NGA’s DTED [3]. The
algorithm uses a screen projected node width approximation for ascertaining
whether refinements, or simplifications, of the CLLGR are required. The loaded
information is also then projected into a user specified coordinate system that
converts the source latitude and longitude tuples into geocentric vertex
information. The three available projections at this time are a flat earth
projection, a WGS84 projection, or a Lambert Conformal projection; however
there is no limitation to the types of projections that are possible.

A significant advantage to the algorithm is it eliminates the need for conversions
from the native formats allowing it to respond quickly to new data, preserve
source data statistical accuracy, and allow for a controlled lighting environment.
By stitching between various resolutions of data instead of drawing shelves
between resolutions as is the case with NASA World Wind [4], Chunked LOD [5],
and JCanyon [6], our algorithm can calculate normals and use OpenGL based
lighting instead of only relying on pre-lit imagery. This is critical when displaying
non-photographic imagery, road maps, or the raw terrain data since lighting
provides the only visual cue of terrain undulations (Figure 3).

Figure 3 Non-textured OpenGL lit DTED

4

A B

ED

HG

C

F

I

C J

KF

LI

A

D

G

A

B

E

D

H

G

C

F

I

J

K

L

TreeNode Perspective IndexNode Perspective

TreeNode

IndexNode

Legend

The procedure to define and process the data structure in preparation for
rendering is as follows:

1. Create one or more top level TreeNodes - If more than one TreeNode is
created then link neighboring TreeNodes where desired. For example, a cylinder
could have two top level Tree Nodes, where traversing an IndexNodes right links
would create a cycle (Figure 4). In this example the TreeNodes share edges of
the finished geometry by sharing the IndexNodes labeled A, D, G, C, F, and I.
This creates the lowest quality version for this case. Each TreeNode directly
accesses nine IndexNodes, but due to the sharing of some indexNodes, there
are only twelve unique IndexNodes.

Before displaying a particular level of refinement, a view refinement step can be
taken. This step essentially determines whether the current representation as
stored by the tree of TreeNodes and IndexNodes satisfies the criteria. For this
case, assume one TreeNode failed the check and needed refinement.

2. Test each TreeNode based on the defined quality measurement - If the
current representation is less than the desired goal, the node is refined. Refer to
the description for the refinement process below (Figure 5). Step 1 is to create
four TreeNode children. Step 2 is to create up to sixteen new IndexNodes. If an
IndexNode already exists that satisfies the geometric relationship, then the
previously created IndexNode must be shared by these new IndexNodes. This is

Figure 4 Top Level Example – Two Top Level TreeNodes Share IndexNodes

5

identical to the requirements for the TreeNodes as specified in Figure 4. In this
example the assumption is that no previously created IndexNodes satisfy the
geometric relationship so sixteen new IndexNodes are created. Step 3 is to
assign the newly created IndexNodes to their respective TreeNodes. Notice that
the sharing of IndexNodes is pervasive through this algorithm and is the basis for
it’s efficiency and effectiveness. Step 4 is to assign the four newly created
TreeNodes to the TreeNode that failed the view criteria. Step 5 is to then link in
the new IndexNodes.

Figure 5a Refinement Process – Initial State through Step 2

A B

ED

HG

C

F

I

IndexNode linksTreeNode links TreeNode Data Structures

Node1

v0 = E
v1 = B
v2 = A
v3 = D
v4 = G
v5 = H
v6 = I
v7 = F
v8 = C
NW = Node2
NE = Node3
SW = Node4
SE = Node5

QuadTree

Initial State

Node 1Node 1

A B

ED

HG

C

F

I

IndexNode linksTreeNode links TreeNode Data Structures

Node1

v0 = E
v1 = B
v2 = A
v3 = D
v4 = G
v5 = H
v6 = I
v7 = F
v8 = C
NW = Node2
NE = Node3
SW = Node4
SE = Node5

Node2

v0 = null
v1 = null
v2 = null
v3 = null
v4 = null
v5 = null
v6 = null
v7 = null
v8 = null
NW = null
NE = null
SW = null
SE = null

Node3

v0 = null
v1 = null
v2 = null
v3 = null
v4 = null
v5 = null
v6 = null
v7 = null
v8 = null
NW = null
NE = null
SW = null
SE = null

Node4

v0 = null
v1 = null
v2 = null
v3 = null
v4 = null
v5 = null
v6 = null
v7 = null
v8 = null
NW = null
NE = null
SW = null
SE = null

Node5

v0 = null
v1 = null
v2 = null
v3 = null
v4 = null
v5 = null
v6 = null
v7 = null
v8 = null
NW = null
NE = null
SW = null
SE = null

QuadTree

Step 1) Create 4 new Tree Nodes

Node 1

Node 2 Node 3

Node 4 Node 5

Node 1

* bold indicates changes from previous state

d

h

a

ec

A B

ED

k lj

o HG

b C

f g

i F

m n

p I

IndexNode linksTreeNode links TreeNode Data Structures

Node1

v0 = E
v1 = B
v2 = A
v3 = D
v4 = G
v5 = H
v6 = I
v7 = F
v8 = C
NW = Node2
NE = Node3
SW = Node4
SE = Node5

Node2

v0 = null
v1 = null
v2 = null
v3 = null
v4 = null
v5 = null
v6 = null
v7 = null
v8 = null
NW = null
NE = null
SW = null
SE = null

Node3

v0 = null
v1 = null
v2 = null
v3 = null
v4 = null
v5 = null
v6 = null
v7 = null
v8 = null
NW = null
NE = null
SW = null
SE = null

Node4

v0 = null
v1 = null
v2 = null
v3 = null
v4 = null
v5 = null
v6 = null
v7 = null
v8 = null
NW = null
NE = null
SW = null
SE = null

Node5

v0 = null
v1 = null
v2 = null
v3 = null
v4 = null
v5 = null
v6 = null
v7 = null
v8 = null
NW = null
NE = null
SW = null
SE = null

QuadTree

Step 2) Create 16 new IndexNodes

Node 1

Node 2 Node 3

Node 4 Node 5

Node 1

6

After these connections are created the ability to create a cycle by walk around
the IndexNodes is preserved. This creates the depiction in Figure 6.

Figure 5b Refinement Process – Step 3 through Step 5

d

h

a

ec

A B

ED

k lj

o HG

b C

f g

i F

m n

p I

IndexNode linksTreeNode links TreeNode Data Structures

Node1

v0 = E
v1 = B
v2 = A
v3 = D
v4 = G
v5 = H
v6 = I
v7 = F
v8 = C
NW = Node2
NE = Node3
SW = Node4
SE = Node5

Node2

v0 = d
v1 = a
v2 = A
v3 = c
v4 = D
v5 = h
v6 = E
v7 = e
v8 = B
NW = null
NE = null
SW = null
SE = null

Node3

v0 = f
v1 = b
v2 = B
v3 = e
v4 = E
v5 = i
v6 = F
v7 = g
v8 = C
NW = null
NE = null
SW = null
SE = null

Node4

v0 = k
v1 = h
v2 = D
v3 = j
v4 = G
v5 = o
v6 = H
v7 = l
v8 = E
NW = null
NE = null
SW = null
SE = null

Node5

v0 = m
v1 = i
v2 = E
v3 = l
v4 = H
v5 = p
v6 = I
v7 = n
v8 = F
NW = null
NE = null
SW = null
SE = null

QuadTree

Step 3) Assign new IndexNodes

Node 1

Node 2 Node 3

Node 4 Node 5

Node 1

d

h

a

ec

A B

ED

k lj

o HG

b C

f g

i F

m n

p I

IndexNode linksTreeNode links TreeNode Data Structures

Node1

v0 = E
v1 = B
v2 = A
v3 = D
v4 = G
v5 = H
v6 = I
v7 = F
v8 = C
NW = Node2
NE = Node3
SW = Node4
SE = Node5

Node2

v0 = d
v1 = a
v2 = A
v3 = c
v4 = D
v5 = h
v6 = E
v7 = e
v8 = B
NW = null
NE = null
SW = null
SE = null

Node3

v0 = f
v1 = b
v2 = B
v3 = e
v4 = E
v5 = i
v6 = F
v7 = g
v8 = C
NW = null
NE = null
SW = null
SE = null

Node4

v0 = k
v1 = h
v2 = D
v3 = j
v4 = G
v5 = o
v6 = H
v7 = l
v8 = E
NW = null
NE = null
SW = null
SE = null

Node5

v0 = m
v1 = i
v2 = E
v3 = l
v4 = H
v5 = p
v6 = I
v7 = n
v8 = F
NW = null
NE = null
SW = null
SE = null

QuadTree

Step 4) Assign Children Tree Nodes

Node 1

Node 2 Node 3

Node 4 Node 5

Node 1

d

h

a

ec

A B

ED

k lj

o HG

b C

f g

i F

m n

p I

IndexNode linksTreeNode links

Node 1

Node 2 Node 3

Node 4 Node 5

TreeNode Data Structures

Node1

v0 = E
v1 = B
v2 = A
v3 = D
v4 = G
v5 = H
v6 = I
v7 = F
v8 = C
NW = Node2
NE = Node3
SW = Node4
SE = Node5

Node2

v0 = d
v1 = a
v2 = A
v3 = c
v4 = D
v5 = h
v6 = E
v7 = e
v8 = B
NW = null
NE = null
SW = null
SE = null

Node3

v0 = f
v1 = b
v2 = B
v3 = e
v4 = E
v5 = i
v6 = F
v7 = g
v8 = C
NW = null
NE = null
SW = null
SE = null

Node4

v0 = k
v1 = h
v2 = D
v3 = j
v4 = G
v5 = o
v6 = H
v7 = l
v8 = E
NW = null
NE = null
SW = null
SE = null

Node5

v0 = m
v1 = i
v2 = E
v3 = l
v4 = H
v5 = p
v6 = I
v7 = n
v8 = F
NW = null
NE = null
SW = null
SE = null

QuadTree

Step 5) Link Index Nodes together

7

If the current representation exceeds the desired goal, the node is decimated.
Refer to the description for the decimation process below (Figure 7).

Figure 6 Data structure after one refinement process iteration

Figure 7a Decimation Process – Initial State

A B

E D

H G

C

F

I

C J

KF

LI

A

D

G

TreeNode Perspective

C

F

I

n

A

B

E

D

H

G

J

K

L

a

h

o

d

c

j
e

l

k

b

i

f

p

m

d

h

a

ec

A B

ED

k lj

o HG

b C

f g

i F

m n

p I

IndexNode linksTreeNode links

Node 1

Node 2 Node 3

Node 4 Node 5

TreeNode Data Structures

Node1

v0 = E
v1 = B
v2 = A
v3 = D
v4 = G
v5 = H
v6 = I
v7 = F
v8 = C
NW = Node2
NE = Node3
SW = Node4
SE = Node5

Node2

v0 = d
v1 = a
v2 = A
v3 = c
v4 = D
v5 = h
v6 = E
v7 = e
v8 = B
NW = null
NE = null
SW = null
SE = null

Node3

v0 = f
v1 = b
v2 = B
v3 = e
v4 = E
v5 = i
v6 = F
v7 = g
v8 = C
NW = null
NE = null
SW = null
SE = null

Node4

v0 = k
v1 = h
v2 = D
v3 = j
v4 = G
v5 = o
v6 = H
v7 = l
v8 = E
NW = null
NE = null
SW = null
SE = null

Node5

v0 = m
v1 = i
v2 = E
v3 = l
v4 = H
v5 = p
v6 = I
v7 = n
v8 = F
NW = null
NE = null
SW = null
SE = null

QuadTree

Initial State

8

3. Generate triangle fans from the TreeNodes for rendering - Referring to
Figure 8, after all necessary refinements are made, the display process of
creating the triangle fans to be sent to the graphics card begins. The process is
applied at all TreeNodes that do not have children. For each TreeNode,
transform the data in the IndexNode into the desired coordinate system and add
it to a list of vertices, referred to as the vertex list, for the triangle fan. Follow that
IndexNode’s top link. Transform that new IndexNode’s data into the desired
coordinate system and add it to the vertex list. Follow that IndexNode’s left link.

Figure 7b Decimation Process – Step 1 through Step 3

d

h

a

ec

A B

ED

k lj

o HG

b C

f g

i F

m n

p I

IndexNode linksTreeNode links TreeNode Data Structures

Node1

v0 = E
v1 = B
v2 = A
v3 = D
v4 = G
v5 = H
v6 = I
v7 = F
v8 = C
NW = Node2
NE = Node3
SW = Node4
SE = Node5

Node2

v0 = d
v1 = a
v2 = A
v3 = c
v4 = D
v5 = h
v6 = E
v7 = e
v8 = B
NW = null
NE = null
SW = null
SE = null

Node3

v0 = f
v1 = b
v2 = B
v3 = e
v4 = E
v5 = i
v6 = F
v7 = g
v8 = C
NW = null
NE = null
SW = null
SE = null

Node4

v0 = k
v1 = h
v2 = D
v3 = j
v4 = G
v5 = o
v6 = H
v7 = l
v8 = E
NW = null
NE = null
SW = null
SE = null

Node5

v0 = m
v1 = i
v2 = E
v3 = l
v4 = H
v5 = p
v6 = I
v7 = n
v8 = F
NW = null
NE = null
SW = null
SE = null

QuadTree

Step 2) Disconnect Children Tree Nodes

Node 1

Node 2 Node 3

Node 4 Node 5

Node 1

A B

ED

HG

C

F

I

IndexNode linksTreeNode links TreeNode Data Structures

Node1

v0 = E
v1 = B
v2 = A
v3 = D
v4 = G
v5 = H
v6 = I
v7 = F
v8 = C
NW = Node2
NE = Node3
SW = Node4
SE = Node5

QuadTree

Node 1Node 1

Step 3) Remove children TreeNodes

d

h

a

ec

A B

ED

k lj

o HG

b C

f g

i F

m n

p I

IndexNode linksTreeNode links TreeNode Data Structures

Node1

v0 = E
v1 = B
v2 = A
v3 = D
v4 = G
v5 = H
v6 = I
v7 = F
v8 = C
NW = Node2
NE = Node3
SW = Node4
SE = Node5

Node2

v0 = d
v1 = a
v2 = A
v3 = c
v4 = D
v5 = h
v6 = E
v7 = e
v8 = B
NW = null
NE = null
SW = null
SE = null

Node3

v0 = f
v1 = b
v2 = B
v3 = e
v4 = E
v5 = i
v6 = F
v7 = g
v8 = C
NW = null
NE = null
SW = null
SE = null

Node4

v0 = k
v1 = h
v2 = D
v3 = j
v4 = G
v5 = o
v6 = H
v7 = l
v8 = E
NW = null
NE = null
SW = null
SE = null

Node5

v0 = m
v1 = i
v2 = E
v3 = l
v4 = H
v5 = p
v6 = I
v7 = n
v8 = F
NW = null
NE = null
SW = null
SE = null

QuadTree

Step 1) Unlink 16 IndexNodes

Node 1

Node 2 Node 3

Node 4 Node 5

Node 1

9

Transform and add that new IndexNode’s data to the vertex list. If this node has
a bottom link, take it; otherwise follow the IndexNode’s left link. Continue this
operation until all directly accessible IndexNodes for this TreeNode have been
traversed. This may result in more than nine vertices being stored, since a
neighbor may have refined.

Referring to Figure 9, after applying the display process explained in Figure 8 to
the data structure depicted in Figure 4, the resultant triangle fans would be
generated. Each individual fan is shaded with a different pattern. Since there
are five TreeNodes that do not have children, 5 triangle fans are created. The
triangle fans avoid T-junctions by the fact that the IndexNodes are shared and
thus neighbors that require additional levels of refinement are effectively inserting
IndexNodes for multiple TreeNodes without the need for direct knowledge of their
siblings. The final step is to send the triangle fan list generated as efficiently as
possible to your particular graphics hardware.

Figure 8 Display Process Flow Chart

Start
Add V0

Transformed
Vertex to Draw List

Follow V0 top link

Follow left link

bottom link =
null

Yes

No

Add Transformed
Vertex to Draw List

Add Transformed
Vertex to Draw List

Follow bottom link

Add Transformed
Vertex to Draw List

right link = null
or

right link = V0

No

Yes

Follow right link

Add Transformed
Vertex to Draw List

top link = null
or

top link = V0

No

Yes

Follow top link

Add Transformed
Vertex to Draw List

left link = null
or

left link != V0

No

Yes

Follow left link

Add Transformed
Vertex to Draw List

bottom link =
null

No

Yes

Walking
Left Side

Walking
Bottom Side

Walking
Right Side

Currently at IndexNode V2

Walking
Top 2nd Half

Currently at IndexNode V4 Currently at IndexNode V6 Currently at IndexNode V8 Currently at IndexNode V1

Currently at IndexNode V1

End

 Walking
Top 1st Half

10

The display process can be easily modified eliminating the need to transform or
to store the entire transformed vertex data into other more effective data
structures for particular hardware or graphics library.

This algorithm could easily be modified to use non-uniformly gridded data, as
through the use of currently published works that perform a gridding operation.
Non quad tree representations could also be used, allowing for different
refinement processes. Non-view dependent criteria can also be used.

3 Conclusions

Timely presentation of massive terrain datasets is critical in a Command and
Control environment with a delicate balance between speed and accuracy. It is
extremely important to preserve the raw data for precise mission planning, but

Figure 9 Applying the display process to the data structure

A B

E D

H G

C

F

I

C J

KF

LI

A

D

G

TreeNode Perspective IndexNode Perspective

After Display Process

A

B

E

D

H

G

C

F

I

J

K

L

a

h

o

d

c

j
e

l

k

b

i

f

p

m

n

11

just as important is fast access to the information to make timely decisions. We
have developed a novel approach for displaying massive datasets without
sacrificing the raw data format and accuracy for speed.

This implementation addresses the need to display high resolution terrain data
(e.g. DTED) from global to high-resolution scales. This approach addresses
specifically the methodology for loading and managing gridded datasets. Since
even the best modern hardware cannot use brute force methods for loading or
displaying such voluminous data at the global level, the only way to achieve the
visual quality and the interactive speed desired is to use real-time algorithms that
vary the quality of the displayed content.

The algorithm described here provides a novel approach to visualization of
unmodified source data where data precision is important but varies along the
surface. This technique isn’t constrained to geospatial visualization and can be
used to display other models or mathematical functions.

12

REFERENCES

[1] National Imagery and Mapping Agency, “Digital Terrain Elevation Data
(DTED), Tech. Rep. MILPRF-89020B", 2000.

[2] Duchaineau, M., Wolinsky, M. Sigeti, D., Miller, M., Aldrich, C., Mineev-
Weinstein, M., “ROAMing Terrain: Real-time Optimally Adapting Meshes”, 1997.

[3] Moore, J., and McVay, A., “Method for Loading And Displaying Massive
Gridded Datasets Patent #60/879,211”, 2007.

[4] National Aeronautics and Space Administration, “World Wind”,
http://worldwind.arc.nasa.gov, 2006.

[5] Ulrich, T., “Super-Size It! Scaling Up to Massive Virtual Worlds”, ACM
Siggraph 2002.

[6] Russell, K., “JCanyon: Grand Canyon for Java”, SUN Microsystems, 2001.

13

http://worldwind.arc.nasa.gov

